Deep Learning in Modern C++
ISBN: 978-93-658-9351-9
Format: 19.1x23.5cm
Liczba stron: 464
Oprawa: Miękka
Wydanie: 2025 r.
Język: angielski
Dostępność: dostępny
<p><strong style="background-color: rgba(0, 0, 0, 0); color: rgba(0, 0, 0, 1)">DESCRIPTION </strong></p><p><span style="background-color: rgba(0, 0, 0, 0); color: rgba(34, 34, 34, 1)">Deep learning is revolutionizing how we approach complex problems, and harnessing its power directly within C++ provides unparalleled control and efficiency. This book bridges the gap between cutting-edge deep learning techniques and the robust, high-performance capabilities of modern C++, empowering developers to build sophisticated AI applications from the ground up.</span></p><p></p><p><span style="background-color: rgba(0, 0, 0, 0); color: rgba(34, 34, 34, 1)">This book guides you through the entire development lifecycle, starting with a solid foundation in the modern features and essential libraries, like Eigen, for C++. You will master core deep learning concepts by implementing convolutions, fully connected layers, and activation functions, while learning to optimize models using gradient descent, backpropagation, and advanced optimizers like SGD, Momentum, RMSProp, and Adam. Crucial topics like cross-validation, regularization, and performance evaluation are covered, ensuring robust and reliable applications. Finally, you will dive into computer vision, building image classifiers and object localization systems, leveraging transfer learning for optimal performance.</span></p><p></p><p><span style="background-color: rgba(0, 0, 0, 0); color: rgba(34, 34, 34, 1)">By the end of this book, you will be proficient in developing and deploying deep learning models within C++, equipped with the tools and knowledge to tackle real-world AI challenges with confidence and precision.</span></p><p></p><p><strong style="background-color: rgba(0, 0, 0, 0); color: rgba(0, 0, 0, 1)">WHAT YOU WILL LEARN</strong></p><p><span style="background-color: rgba(0, 0, 0, 0); color: rgba(0, 0, 0, 1)">● </span><span style="background-color: rgba(0, 0, 0, 0); color: rgba(34, 34, 34, 1)">Implement core deep learning models in modern C++.</span></p><p><span style="background-color: rgba(0, 0, 0, 0); color: rgba(0, 0, 0, 1)">● </span><span style="background-color: rgba(0, 0, 0, 0); color: rgba(34, 34, 34, 1)">Code CNNs, RNNs, GANs, and optimization techniques.</span></p><p><span style="background-color: rgba(0, 0, 0, 0); color: rgba(0, 0, 0, 1)">● </span><span style="background-color: rgba(0, 0, 0, 0); color: rgba(34, 34, 34, 1)">Build and test robust deep learning C++ applications.</span></p><p><span style="background-color: rgba(0, 0, 0, 0); color: rgba(0, 0, 0, 1)">● </span><span style="background-color: rgba(0, 0, 0, 0); color: rgba(34, 34, 34, 1)">Apply transfer learning in C++ computer vision tasks.</span></p><p><span style="background-color: rgba(0, 0, 0, 0); color: rgba(0, 0, 0, 1)">● </span><span style="background-color: rgba(0, 0, 0, 0); color: rgba(34, 34, 34, 1)">Master backpropagation and gradient descent in C++.</span></p><p><span style="background-color: rgba(0, 0, 0, 0); color: rgba(0, 0, 0, 1)">● </span><span style="background-color: rgba(0, 0, 0, 0); color: rgba(34, 34, 34, 1)">Develop image classifiers and object detectors in C++.</span></p><p></p><p><strong style="background-color: rgba(0, 0, 0, 0); color: rgba(0, 0, 0, 1)">WHO THIS BOOK IS FOR</strong></p><p><span style="background-color: rgba(0, 0, 0, 0); color: rgba(34, 34, 34, 1)">This book is tailored for C++ developers, data scientists, and machine learning engineers seeking to implement deep learning models using modern C++. A foundational understanding of C++ programming and basic linear algebra is recommended.</span></p><p></p><p></p>