Poznań

 

 
Produkt "The Lily and the Cross" został dodany do koszyka.
 

TWÓJ KOSZYK

W twoim koszyku jest 32 produktów,
łącznie za kwotę 3 790,90 zł
OSTATNIO DODANY PRODUKT :
The Lily and the Cross
De Mille James
136,10 zł

 
ksiazka tytuł: Praktyczne uczenie maszynowe autor: Szeliga Marcin
DOSTAWA WYŁĄCZNIE NA TERYTORIUM POLSKI

FORMY I KOSZTY DOSTAWY
  • 0,00 zł
  • 0,00 zł
  • 9,50 zł
  • 12,50 zł
  • 0,00 zł
  • Od 9,90 zł
  • Od 11,00 zł
  • 0,00 zł
  • Od 6,90
  • Od 9,90

Praktyczne uczenie maszynowe

Wersja papierowa
Wydawnictwo: Wydawnictwo Naukowe PWN
ISBN: 978-83-01-20762-5
Format: 16.5x23.5cm
Liczba stron: 468
Oprawa: Miękka
Wydanie: 1, 2019 r.
Język: polski

Dostępność: dostępny
99,00 zł

Publikacja Format Wydanie Cena
eKsiążka epub 1, 2019 r. 104,00 zł
eKsiążka mobi 1, 2019 r. 104,00 zł
 
 

Ostatnia dekada to czas bezprecedensowego rozwoju sztucznej inteligencji – nie tylko przełomowych badań nad algorytmami uczenia maszynowego, ale również coraz powszechniejszego stosowania inteligentnych maszyn w najróżniejszych dziedzinach naszego życia. Rozwój ten ogranicza niewystarczająca liczba specjalistów, łączących znajomość modelowania danych (przygotowania danych i zasad działania algorytmów uczenia maszynowego) ze znajomością języków analizy danych, takich jak SQL, R czy Python.
Inżynieria danych (ang. data science) to interdyscyplinarna wiedza, której opanowanie wymaga znajomości algebry, geometrii, statystyki, rachunku prawdopodobieństwa i algorytmiki, uzupełnionej o praktyczną umiejętność programowania. Co więcej, sztuczna inteligencja jest przedmiotem intensywnych badań naukowych i samo śledzenie postępów w tej dziedzinie wiąże się z regularnym (codziennym) dokształcaniem.
Niniejsza książka łączy w sobie teorię z praktyką. Opisuje rozwiązania kilkunastu typowych problemów, takich jak prognozowanie zysków, optymalizacja kampanii marketingowej, proaktywna konserwacja sprzętu czy oceny ryzyka kredytowego. Ich układ jest celowy – każdy przykład jest okazją do wyjaśnienia określonych zagadnień, zaczynając od narzędzi, przez podstawy uczenia maszynowego, sposoby oceny jakości danych i ich przygotowania do dalszej analizy, zasady tworzenia modeli uczenia maszynowego i ich optymalizacji, po wskazówki dotyczące wdrożenia gotowych modeli do produkcji.
Książka jest adresowana do wszystkich, którzy chcieliby poznać lub udoskonalić:
praktyczną znajomość statystki i umiejętność wizualizacji danych niezbędnej do oceny jakości danych; praktyczną znajomość języka SQL, R lub Python niezbędnej do uporządkowania, wstępnego przygotowania i wzbogacenia danych; zasady działania poszczególnych algorytmów uczenia maszynowego koniecznych do ich wyboru i optymalizacji; korzystanie z języka R lub Python do stworzenia, oceny, zoptymalizowania i wdrożenia do produkcji modeli eksploracji danych. Zarówno studenci kierunków informatycznych, jak również analitycy, programiści, administratorzy baz danych oraz statystycy znajdą w książce informacje, które pozwolą im opanować praktyczne umiejętności potrzebne do samodzielnego tworzenia systemów uczenia maszynowego.

 

Newsletter

Newsletter
Zapisz Wypisz

Klikając "Zapisz" zgadzasz się na przesyłanie na udostępniony adres e-mail informacji handlowych, tj. zwłaszcza o ofertach, promocjach w formie dedykowanego newslettera.

Płatności

Kanały płatności

Księgarnia PWN Poznań akceptuje płatności:

  • płatność elektroniczna eCard (karta płatnicza, ePrzelew)
  • za pobraniem - przy odbiorze przesyłki należność pobiera listonosz lub kurier