Brauer Groups and Obstruction Problems
ISBN: 978-33-19-83601-0
Format: 15.6x23.4cm
Liczba stron: 260
Oprawa: Miękka
Wydanie: 2018 r.
Język: angielski
Dostępność: dostępny
<p>The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory.</p><p>Contributors:<br></p><p>· Nicolas Addington</p>
· Benjamin Antieau<p></p>
<p>· Kenneth Ascher </p>· Asher Auel<p></p>
<p>· Fedor Bogomolov</p>
<p>· Jean-Louis Colliot-Thélène</p>
<p>· Krishna Dasaratha</p>
<p>· Brendan Hassett</p>
<p>· Colin Ingalls</p>
· Martí Lahoz<p></p>
<p>· Emanuele Macrì</p>
<p>· Kelly McKinnie</p>
<p>· Andrew Obus</p>
<p>· Ekin Ozman</p>
<p>· Raman Parimala</p>
<p>· Alexander Perry</p>
<p>· Alena Pirutka</p>
<p>· Justin Sawon</p>
<p>· Alexei N. Skorobogatov</p>
<p>· Paolo Stellari</p>
· Sho Tanimoto<p></p>
<p>· Hugh Thomas</p>
<p>· Yuri Tschinkel</p>
<p>· Anthony Várilly-Alvarado</p>
<p>· Bianca Viray</p>
<p>· Rong Zhou</p><br><br>