<p>This book presents numerical methods for solving a wide range of problems associated with the structure of atoms and simplest molecules, and their interaction with electromagnetic radiation, electrons, and other particles. It introduces the ATOM-M software package, presenting a unified software suite, written in Fortran, for carrying out precise atomic and molecular numeric calculations.</p>
<p>The book shows how to apply these numerical methods to obtain many different characteristics of atoms, molecules, and the various processes within which they interact. In an entirely self-sufficient approach, it teaches the reader how to use the codes provided to build atomic and molecular systems from the ground up and obtain the resulting one-electron wave functions. The computational programs presented and made available in this book allow calculations in the one-electron Hartree-Fock approximation and take into account many-electron correlations within the framework of the random-phase approximation with exchange or many-body perturbation theory.</p> Ideal for scholars interested in numerical computation of atomic and molecular processes, the material presented in this book is useful to both experts and novices, theorists, and experimentalists.